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The Genetic Investigation of Anthropometric Traits (GIANT) consortium identified 14 loci in European Ancestry
(EA) individuals associated with waist-to-hip ratio (WHR) adjusted for body mass index. These loci are wide and
narrowing thesignals remainsnecessary. Twelve of 14 loci identified in GIANT EA samples retained strongasso-
ciations with WHR in our joint EA/individuals of African Ancestry (AA) analysis (log-Bayes factor >6.1). Trans-
ethnicanalysesatfive loci (TBX15-WARS2,LYPLAL1,ADAMTS9,LY86and ITPR2-SSPN)substantiallynarrowed
the signals to smaller sets of variants, some of which are in regions that have evidence of regulatory activity.
By leveraging varying linkage disequilibrium structures across different populations, single-nucleotide poly-
morphisms (SNPs) with strong signals and narrower credible sets from trans-ethnic meta-analysis of central
obesity provide more precise localizations of potential functional variants and suggest a possible regulatory
role. Meta-analysis results for WHR were obtained from 77 167 EA participants from GIANT and 23 564 AA parti-
cipants from the African Ancestry Anthropometry Genetics Consortium. For fine mapping we interrogated SNPs
within +++++250 kb flanking regions of 14 previously reported index SNPs from loci discovered in EA populations by
performing trans-ethnic meta-analysis of results from the EA and AA meta-analyses. We applied a Bayesian
approach that leverages allelic heterogeneity across populations to combine meta-analysis results and aids
in fine-mapping shared variants at these locations. We annotated variants using information from the
ENCODE Consortium and Roadmap Epigenomics Project to prioritize variants for possible functionality.

INTRODUCTION

Waist–hip ratio, a measure of body fat distribution, is associated
with metabolic consequences independent of overall adiposity
as measured by body mass index (BMI) (1–3). Evidence has
indicated that body fat distribution is partially determined by
genetic factors with age- and BMI-adjusted heritability esti-
mates for waist–hip ratio ranging from 36–61% (4).

In the past few years, genome-wide association studies have
seen numerous successes in the identification of genetic variants

associated with adiposity traits, including those characterizing
centralized fat patterning. The Genetic Investigation of An-
thropometric Traits (GIANT) consortium previously reported
14 loci associated with waist–hip ratio adjusted for BMI, age,
age2 and sex [waist-to-hip ratio (WHR)] in studies of European
Ancestry (EA) (5). Recently, we also conducted a similar
genome-wide association analysis in African Ancestry (AA)
studies jointly from the African Ancestry Anthropometry Genet-
ics (AAAG) Consortium, identifying one WHR-associated locus
(6). While our analysis failed to detect genome-wide significant
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association findings overlapping those in the GIANT Consor-
tium, our lead single-nucleotide polymorphism (SNP)
rs6931262 at newly identified RREB1 in AA is 474 kb away
from the lead SNP rs1294421 at LY86 in EA. Given the low pair-
wise linkage disequilibrium (LD), these variants likely represent
two independent signals. However, they may be also partially
tagging an untyped functional variant that contributes to both
underlying associations. In addition, 12 of 14 SNPs had the
same effect direction with respect to the beta coefficient
(P-value ¼ 0.0065) between AA and EA samples and five
index SNPs in EA demonstrated nominal significance
(P-value , 0.05) in AA. These results may demonstrate similar-
ity in the genetic architecture in EA and AA and suggests that
trans-ethnic association analysis may provide further informa-
tion in fine-mapping the previously identified loci.

Most previous genome-wide association studies (GWAS)
have been conducted separately by race/ethnicity due to con-
cerns with allelic heterogeneity and differing patterns of LD
between populations. In the present study, we use a Bayesian
approach to exploit precisely these differences between EA
and AA samples to fine map variants at WHR loci first identified
in EA samples.

RESULTS

MANTRA results of 14 previously identified GIANT loci

Twelve of 14 previously published loci (index SNP) in the
samples of EA retained strong evidence for association
(logBF . 6.1) with WHR in the joint trans-ethnic analysis of
EA and AA samples (Table 1). We used a stringent threshold,
i.e. logBF value of at least 6.1 based on empirical simulation
results reported by Wang et al. (7), which most closely approx-
imates genome-wide significance. None of the 14 loci displayed
heterogeneity in their allelic effects (all posterior probabilities
for heterogeneity ,0.95). At four loci, the originally reported

associated SNP remained the lead SNP for that region (i.e. the
SNP with the largest logBF within each locus): rs984222 at
TBX15-WARS2; rs6784615 at NISCH-STAB1; rs1443512 at
HOXC13; and rs4823006 at ZNRF3-KREMEN1. For the remain-
ing 10 loci, different SNPs with greater effect sizes and reduced
credible regions were identified; all alternate SNPs are in LD
with the previously identified variants in EA (r2 . 0.4 in
HapMap II CEU).

We constructed 95% credible sets (CSs) for the meta-analysis
results from GIANT EA samples only and for the trans-ethnic
meta-analysis result (Table 1). Eight of the 95% CSs obtained
from trans-ethnic association analyses generated shorter CSs
length ranging from 4 to 94% length reduction (DNM3-PIGC,
NFE2L3, LY86, LYPLAL1, ADAMTS9, ITPR2-SSPN, RSPO3
and TBX15-WARS2) compared with the sets based on EA
samples only (Fig. 1 and Supplementary Material, Fig. S1) and
five (LY86, LYPLAL1, ADAMTS9, ITPR2-SSPN and
TBX15-WARS2) of them have .25% length reduction. The
greatest decrease in the distance spanned by the 95% CS of
SNPs was at the locus LYPLA1, where the CS was reduced by
"80% from 148 141 bp in the analysis of EA samples only to
27 409 bp in the trans-ethnic analysis (Fig. 1A). The LD sur-
rounding the original index SNP in this locus is much stronger
in CEU compared with that in YRI. In addition, a few SNPs in
high LD with the index SNP in both populations have enhanced
association signals and the LD block with the index SNP is much
narrower in YRI samples, leading to a much narrower CS in
trans-ethnic analysis and dropping 15 variants from EA-derived
CS. The distance spanned by SNPs at the locus ADAMTS9
decreased 72% from 30 679 to 8669 bp by comparing trans-
ethnic analysis to the EA sample only analysis (Fig. 1B).
Neither CEU nor YRI have strong LD with many variants
surrounding the original index SNPs; however, the variants in
strong LD with the index SNP are within a narrow region in
both samples of ancestries (narrower in YRI than in CEU).
The association signals are highly enhanced and association

Table 1. Trans-ethnic meta-analysis association results for 14 loci previously reported in EA sample

Loci information EA-sample only Multi-ethnic meta-analysis results
Genes Index SNPa chr LogBFb Lengthc nd Lead SNP LogBFe Lengthc nd CEU LDf YRI LDf

TBX15-WARS2 rs984222 1 12.68 27 654 4 rs984222 14.69 1591 3 Same Same
DNM3-PIGC rs1011731 1 8.95 54 037 11 rs9286854 10.01 48 775 10 0.9 (1.0) 0.5 (0.8)
LYPLAL1 rs4846567 1 10.28 14 8141 23 rs2820443 11.84 27 409 8 1.0 (1.0) 0.9 (1.0)
GRB14 rs10195252 2 8.60 31 272 4 rs1128249 12.10 31 272 5 0.9 (1.0) 1.0 (1.0)
NISCH-STAB1 rs6784615 3 5.83 27 7969 10 rs6784615 5.61 43 1135 10 Same Same
ADAMTS9 rs6795735 3 5.78 30 676 13 rs4132228 8.48 8669 7 0.4 (1.0) 0.1 (1.0)
CPEB4 rs6861681 5 5.03 93 159 11 rs10516107 5.47 93 159 12 1.0 (1.0) N/A
LY86 rs1294421 6 7.41 15 862 6 rs1294410 9.89 6952 5 0.8 (1.0) 0.4 (0.7)
VEGFA rs6905288 6 8.43 5678 2 rs1358980 10.83 6655 2 0.6 (0.9) 0.1 (1.0)
RSPO3 rs9491696 6 12.89 66 820 33 rs7766106 16.42 60 186 20 1.0 (1.0) 0.8 (0.9)
NFE2L3 rs1055144 7 7.03 38 160 13 rs4141278 6.91 36 707 10 1.0 (1.0) 0.0 (1.0)
ITPR2-SSPN rs718314 12 6.96 38 192 13 rs7302344 8.25 28 393 8 0.6 (0.9) 0.1 (1.0)
HOXC13 rs1443512 12 6.71 7447 3 rs1443512 7.27 7447 3 Same Same
ZNRF3-KREMEN1 rs4823006 22 6.55 2194 3 rs4823006 6.84 2194 2 Same Same

aTop variants identified in Heid et al. (2010) (5).
bEvidence of association for the index SNP in EA-sample only.
cLength of 95% credible region in base pair.
dThe number of SNPs of interest, potential causal or tagging to the causal, within the region.
eEvidence of association for the lead SNP in EA + AA sample.
fLD information, r2 (D′), between the index SNP and the lead SNP.
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signals for those top variants are more distinguishable in trans-
ethnic analysis compared with EA sample only analysis. This
result leads to dropping six variants from EA-derived CS to
form a more compact and narrower trans-ethnic-derived CS.
Compared with EA results, 4 of 14 CSs (GRB14, CPEB4,
HOXC13 and ZNRF3-KREMEN1) remain the same length,
and 2 of 14 loci (NISCH-STAB1 and VEGFA) had longer
credible regions. Among these six loci, only one CS

(NISCH-STAB1) has a substantial increase in the length of
credible regions (Supplementary Material, Fig. S1). At this
locus there is very weak LD surrounding the original index
SNP in EA sample. In addition, the signals for the index SNP
and most variants in the region are weak in both EA and AA
samples and the trans-ethnic analysis does not enhance the
association signals (logBF , 6.1). Therefore, the CS in this
case may not be informative.

Figure 1. Regional plot of loci LYPLAL1 and ADAMTS9. The top panel is obtained from the trans-ethnic meta-analysis result with HapMAP II YRI LD information.
The middle panel classifies variants based on whether they are included in the none, either or both of CSs. The red points represent variants retained in both credible
regions constructed using EA and trans-ethnic samples; yellow and green points represent variants retained in CSs constructed using EA and trans-ethnic samples,
separately; the gray points represents variants which do not fall in any CS.The bottom panel is from EA sample only analysis with HapMap II CEU linkage disequil-
brium information. (A) Regional plot of loci LYPLAL1 (Chr1:217 413 815–217 452 830). There are eight SNPs commonly shared by the CSs obtained from EA-only
and EA + AA. Fifteen additional SNPs are included in the EA-only derived CS while no additional SNP is included in the EA + AA-derived CS. The length change
from 148 141 to 27 409 bp for EA-only and EA + AA derived CSs, respectively. The LD surrounding the original index SNP is much stronger in CEU compared with
that in YRI. In addition, few SNPs with high LD with the indexSNP in both populations have enhancedassociation signals and the LD blockwith the index SNP is much
narrower in YRI samples, leading to a much narrower CS in trans-ethnic analysis and dropping 15 variants from EA-derived CS. (B). Regional plot of loci ADAMTS9
(Chr3:64 575 591–64 648 405). There are 7 SNPs commonly shared by the CSs obtained from EA-only and EA + AA. Six additional SNPs are included in the
EA-only derived CS while no additional SNP is included in the EA + AA-derived CS. The length change from 30 676 to 8669 bp for EA-only and EA + AA
derived CSs, respectively. Neither CEU nor YRI have strong LD for many variants surrounding the original index SNPs; however, the variants with strong LD
with index SNP are within a narrow region in both samples of ancestries (narrower in YRI than in CEU). The association signals are highly enhanced and association
signals for those top variants are more distinguishable in trans-ethnic analysis compared with EA sample only analysis. These lead to the dropping of six variants from
EA-derived CS to form a more compact and narrower trans-ethnic analysis derived CS.
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Bioinformatic annotations for the SNPs in CSs

To evaluate the regulatory potential of the CS SNPs at the five
loci with the greatest decrease (.25%) in CS length, we exam-
ined whether these SNPs map within candidate regulatory ele-
ments identified by the ENCODE Consortium and Roadmap
Epigenomics Project. We analyzed regulatory elements
defined as experimentally detected regions of open chromatin,
histone modification enrichment, and transcription factor
binding in tissues (blood, brain, endothelial, liver, muscle and
pancreatic islet in ENCODE Consortium; adipose, brain, liver,
muscle and pancreatic islet in Roadmap Epigenomics Project)
that we hypothesize may play a role in WHR pathways (Supple-
mentary Material, Table S1). In total, 11 of the 32 (34.4%) CS
SNPs at these loci overlapped elements in two or more datasets
in the same tissue, suggesting that they are located in regions
with evidence of regulatory activity. The SNPs overlapped regu-
latory elements from an average of 11 datasets and a maximum
of 23 datasets.

Two SNPs at LYPLAL1 are located in regions with evidence of
regulatory activity in distinct tissues (Table 2). While rs1415293
maps within regulatory elements in bone and neuronal tissues,
rs2820446 is in a region of regulatory elements in blood
(Fig. 2). At the TBX15-WARS2 locus we identified three SNPs
within a 1.6 kb region with strong evidence of regulatory activity
in adipose, bone, muscle and liver tissues (Table 2). At
ITPR2-SSPN, rs7132434 overlaps the largest number (23) of
regulatory element datasets.

We also examined variants in LD (r2 . 0.8) with any of the
thirty-two 95% CS SNPs in either the European (EUR) or
African (AFR) 1000 Genomes samples. Ten additional variants
overlap regions with evidence of regulatory activity (Supple-
mentary Material, Table S2), usually from the same tissues as
the CS SNPs at the locus.

DISCUSSION

We performed association analysis of WHR at 14 previously
published loci via trans-ethnic meta-analysis. Among the 14
loci, 9 of the 95% CSs obtained from trans-ethnic association
studies contained fewer SNPs. Additionally, the trans-ethnic
association studies shortened the length of the 95% credible
regions for eight loci, and five of them shortened the length
.25%: TBX15-WARS2 (from 27 654 to 1591 bp), ADAMTS9
(from 30 676 to 8669 bp), LY86 (from 15 862 to 6952 bp),
LYPLAL1 (from 148 141 to 27 409 bp) and ITPR2-SSPN (from
38 192 to 28 393 bp).

We observed that several of the loci had a different lead SNP in
the trans-ethnic results compared with the EA only result. It is
likely that when a signal is very strong in a locus and there are
few variants in the locus that are in high LD, the lead SNP in
trans-ethnic analysis will remain the same. An explanation for
the lead SNP changing is LD differences between EA and AA
samples. The best functional variant-tagged SNP may differ
due to the varying LD structure across different populations
and the trans-ethnic meta-analysis accounts for allelic hetero-
geneity that may lead to a different strongest associated SNP.
In addition, the association evidence for a newly identified best
SNP is often not much different from the evidence of original
index SNP, so random fluctuation may also contribute to the
lead SNP changing.

The structure of LD and the strength of signals within each
locus likely influence the length of a CS. We observe that
some CSs become substantially reduced in size in trans-ethnic
meta-analysis results compared their counterpart in EA-only
meta-analysis in the loci such as LYPLAL1, ADAMTS9 and
LY86. These loci share similar patterns in that there is a strong
signal in the EA sample and the signal becomes enhanced in
the multi-ethnic meta-analysis. In addition, the LD is weaker

Table 2. CS SNPs overlapping evidence of regulatory elements

CS SNPs Regulatory datasets overlapping SNPs (by tissue)
Loci/SNP Chr Position Nearest coding TSS Na Open chromatinb H3K4me1 H3K27ac H3K4me3 H3K9ac H3K4me2

TBX15-WARS2
rs984222 1 119 503 843 26 585 TBX15 19 AOMLB AOML OL L OL
rs984225 1 119 504 284 26 144 TBX15 16 AOML AOML OL L OL
rs10923712 1 119 505 434 24 994 TBX15 10 AOML AOML L

LYPLAL1
rs1415293 1 219 730 006 371 938 SLC30A10 4 ON ON
rs2820446 1 219 748 818 353 126 SLC30A10 3 B B B

ADAMTS9
rs4504165 3 64 701 890 228 214 ADAMTS9 4 AM M

LY86
rs912056 6 6 736 197 147 270 LY86 5 AM M M
rs1294407 6 6 738 103 149 176 LY86 14 AOM AM AOM OME
rs1294409 6 6 738 355 149 428 LY86 9 AM A AOM OM

ITPR2-SSPN
rs7132434 12 26 472 562 123 957 SSPN 23 MNILB AOMNELB AOMN M OML
rs1049376 12 26 491 475 142 870 SSPN 14 MNE MN N MN M

For loci with .25% decrease in CS size, CS SNPs overlapping two or more regulatory datasets in the same tissue are shown. Negative distance from nearest
GENCODE v12 basic annotation TSS indicates the variant is downstream of the TSS relative to the direction of transcription. Tissues with elements overlapping each
SNP are indicated as A, adipose; B, blood; E, endothelial; I, pancreatic islets; L, liver; M, muscle; N, brain; O, bone; Chr, chromosome; TSS, transcription start site.
aNumber indicates the total number of overlapping datasets across experiments and cell types.
bOverlap with FAIRE and/or DNaseI hypersensitivity elements indicates open chromatin.
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in the AA sample within these loci, thus highlighting several top
variants. These properties lead to reduced CSs in trans-ethnic
meta-analysis. On the other hand, some loci do not have a
strong enough signal in the EA sample and weak LD pattern
within the locus, such as NISCH-STAB1, leading to uninforma-
tive CSs (Supplementary Material, Fig. S1).

Many genetic association signals are shared across popula-
tions. Ioannidis et al. (8) demonstrated that for common var-
iants, the magnitude of effect estimates was similar across
racial groups; however, allele frequencies varied across racial
groups, resulting in differences in the power to detect effects
across populations. Several studies examining a range of
traits have reported the transferability of disease susceptible
genetic loci across different race/ethnic populations (6,9,10).
There have been several trans-ethnic analyses reported (11–13);
however, there is no analysis, to our knowledge, reporting on
the genetic associations for central adiposity by jointly analyz-
ing data from different race/ethnic populations simultaneously.
Therefore, assuming that there is a shared signal across
populations, our analysis employing MANTRA offers add-
itional insight to uncover the genetic architecture for WHR
by taking advantage of results from different race/ethnic
groups.

Examining overlap with regulatory elements narrowed a list
of 86 candidate SNPs at five loci to 21 SNPs that may influence
transcription in WHR relevant cell lines and tissues. LYPLAL1
SNPs overlap two regions with evidence of regulatory activity
in different tissues, suggesting that SNPs in these regions may
have distinct influences on transcription in different tissues.
Further testing is needed to identify whether these variants influ-
ence transcriptional activity in these cell types. We also identi-
fied a 1.6 kb region near TBX15-WARS2 with evidence of
regulatory activity in multiple tissues including adipose tissue.
One SNP in this region, rs984222, has been previously reported
to have cis-regulatory effects on TBX15 transcription in omental
adipose tissue (5), further supporting the plausibility that this or

another nearby SNP may influence transcriptional activity. A
region near the transcription start site (,100 bp) of the
lncRNA, RP11-513G19.1, overlaps more regulatory elements
than any other CS SNP evaluated and has strong evidence of en-
hancer activity in most of the tissues tested. The epigenomic data
do not distinguish whether this candidate regulatory element
influences transcription of the lncRNA, or a more distal gene
such as ITPR2 or SSPN. Further studies are needed to elucidate
the regulatory effect of these SNPs on nearby transcripts and
their connections to WHR biology.

This analysis identifies CS SNPs overlapping regions with
evidence of regulatory activity that suggest good candidates
for follow-up studies and also provides insight into the possible
tissues in which these variants may regulate transcription. In-
cluding additional regulatory datasets from these or other
tissues may identify additional candidate regulatory variants
and target tissues.

In summary, we performed a trans-ethnic meta-analysis for
WHR with previously published EA and AA meta-analysis
results using an analytical approach, MANTRA, which
allowed for different underlying allelic effects between race/
ethnic groups. As the genomic regions harboring genetic
signals that were shared across the different race/ethnic popula-
tions were more likely to contain functional variants, we gained
power by incorporating all the samples together, at least for those
loci that generalized across population groups. This approach is
especially applicable to the analysis of samples of AA, since
more limited LD is observed in these populations, aiding in fine-
mapping. Our results may have been limited by the fact that our
EA sample size was much larger than our AA sample size.
Indeed, the effects of this difference in sample size require
further investigation. Overall, in leveraging varying LD struc-
tures across different populations, SNPs with the strongest
signals and the CSs from our trans-ethnic meta-analysis provide
more precise localization of variants for future functional
analysis.

Figure 2. CS SNPs at LYPLAL1 in regions with evidence of regulatory activity in distinct tissues UCSC genome browser signal enrichment tracks from regulatory
datasets with elements overlapping rs1415293 (left-most box; bone and brain) and rs2820446 (right-most box; blood) are shown.
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MATERIALS AND METHODS

Design and samples

We conducted a meta-analysis of summary results from EA and
AA GWAS. For the EA data, we used meta-analysis association
results from up to 77 167 individuals in 32 cohorts, published by
the GIANT consortium (5). For the AA data, we used the
meta-analysis GWAS results from up to 19 744 individuals in
14 cohorts in the AAAG Consortium (6).For both EA and AA
data, we obtained the results from the fixed-effects and inverse
variance-weighted meta-analyses of study-specific association
analyses. In this paper, we focused on the 14 loci (TBX15-
WARS2, DNM3-PIGC, LYPLAL1, GRB14, NISCH-STAB1,
ADAMTS9, CPEB4, LY86, VEGFA, RSPO3, NFE2L3, ITPR2-
SSPN, HOXC13, ZNRF3-KREMEN1) previously identified in
the participants of EA in GIANT (5).

Phenotypes

We analyzed the association of WHR, a measure of body fat
distribution. For both the GIANT consortium and the AAAG
Consortium, each cohort created residuals for WHR adjusted
for age, age2, study site (if applicable) and BMI. The residuals
were inverse normal transformed and then used as the pheno-
types in association analysis within each participating cohort.
Each participating cohort used principal components as
needed in regression models assessing the association of a
SNP to account for population stratification. Details regarding
the trait creation and participating studies can be found in the
original publications (5,6).

Statistical analysis

We meta-analyzed the two sets of results for the 14 previously
reported loci with MANTRA software (Meta-Analysis of Trans-
ethnic Association studies) (14). MANTRA is a meta-analysis
approach that can be used to combine GWAS results from
more than one ancestry based on the expectation of similar
allelic effects between the most closely related populations
(14). Technically, populations are clustered based on the
average allele frequency difference by means of a Bayesian par-
tition model and populations within the same cluster are assumed
to have the same underlying allelic effect while allowing hetero-
geneity for populations in different clusters. The evidence in
favor of association of the trait with the genetic variant is quan-
tified with a Bayes’ factor (BF) and a log10 BF of 6.1 or higher is
approximately comparable to a genome-wide significance
threshold of P , 5 × 1028 (7). Specifically in our application,
we conduct the fixed-effect meta-analysis within each race as-
suming there is no genetic heterogeneity across the samples of
participating cohorts from the same race. Then, we implemented
MANTRA to meta-analyze the association results from EA and
AA samples.

Construction of 95% CSs
We used MANTRA results to construct a fine-mapping interval
for each associated index variant (13). We constructed these
intervals from analysis in the EA only set (GIANT results) and
in the results from the trans-ethnic analysis. To create a 95%
CS, we analyzed variants within 250 kb upstream and

downstream from the variant with the index SNP. The algorithm
to construct a CS is the following:

(1) As described in MANTRA, obtain the BF value for each
variant in the region.

(2) For each SNPj, calculate the posterior probability that the
SNP is driving the association signal within the region, i.e.
BFj divided by summation of BF over all SNPs within the
region.

(3) Rank all SNPs within the region according to their BFs, such
that BF(i) represents the ith largest BF.

(4) Proceed down the ranked list until the accumulative poster-
ior probability exceeds 95% of the total cumulative posterior
probably for all SNPs in the locus.

(5) Include in the 95% CS those SNPs with accumulative poster-
ior probability of 0.95. We define the length associated with
each CS as the length of the region in base pairs spanned by
the SNPs retained in the specific CS.

Bioinformatics annotation
We annotated variants in the 95% CSs at the five loci that dis-
played a .25% decrease in 95% CS kilobase size in trans-ethnic
analysis compared with the analysis in EA only: ADAMTS9,
TBX15-WARS2, LYLPAL1, ITPR2-SSPN and LY86. Although
the 25% decrease is an arbitrary cutoff, we chose it to focus on
those CSs where there was a substantial decrease, suggesting
that trans-ethnic analyses aided in fine mapping. To identify
SNPs that may contribute to an association signal but were not
tested in the MANTRA analysis, we also identified SNPs in
strong LD with the 95% CS SNPs in either EA or AA (r2 .
0.8, AFR or EUR 1000 Genomes Phase1 version 2 release)
(15). None of the interrogated variants are coding variants.
The distance from each tested SNP to the nearest transcription
start site of a coding gene was calculated using basic transcript
annotation from GENCODE version 12 (16).

To examine variant overlap with elements from regulatory
datasets, we downloaded data for selected tissue and cell types
describing the locations of regions of open chromatin (DNase-
seq, FAIRE-seq), histone modification signal enrichment
(H3K4me1, H3K27ac, H3K4me3, H3K9ac and H3K4me2),
and transcription factor binding generated by the ENCODE Con-
sortium (17) and Roadmap Epigenomics Project (18). Data from
the ENCODE Integrative Analysis were used when available
(19). For consistency in processing the data across consortia,
we downloaded sequence alignments from the Roadmap Epige-
nomics project and identified regions of enrichment using the
same irreproducible discovery rate (20) pipeline as ENCODE.
For tissues with only one replicate, we used only MACS2 (21)
to identify regions of signal enrichment. A total of 224 datasets
were collected for this analysis (Supplementary Material,
Table S1).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Description of 14 loci (Supplemental Figure 1) 
TBX15-WARS2 (chromosome 1) 
There are 3 SNPs (rs984222, rs10923712, rs984225) commonly shared by the credible 
sets obtained from EA-only and EA+AA. One additional SNP (rs1106529) is included in 
the EA-only derived credible set while no additional SNP is included in the EA+AA 
derived credible set. The length changed from 27,654bp for EA-only to 1,591bp for 
EA+AA derived credible sets. The LD surrounding the original index SNP is slightly 
stronger in CEU compared (bottom panel) to that in YRI (top panel) although both CEU 
and YRI have strong LD. The signal in EA sample is strong; the trans-ethnic analysis 
has slightly enhanced signal and drops one variant in its trans-ethnic derived 95% 
credible set compared to EA-derived credible set. 
 
 
DNM3-PIGC (chromosome 1) 
There are 9 SNPs (rs9286854, rs991790, rs2227199, rs9425592, rs1011731, rs714515, 
rs2213732, rs7534393, rs2001129) commonly shared by the credible sets obtained from 
EA-only and EA+AA. Two additional SNPs (rs9425291, rs2301453) are included in the 
EA-only derived credible set while one additional SNP (rs2227198) is included in the 
EA+AA derived credible set. The length changed from 54,037bp for EA-only to 48,775bp 
for EA+AA derived credible sets. The LD surrounding the original index SNP is stronger 
in CEU compared to that in YRI. In addition, there is a cluster of variants showing strong 
association signals in EA-sample. This cluster of variants retains strong association 
signals in the trans-ethnic analysis although some random fluctuations leads to slight 
changes of variants included in the credible set. 
 
 
LYPLAL1 (chromosome 1) 
There are 8 SNPs (rs2820443, rs4846567, rs1415288, rs4846302, rs2820446, 
rs1337101, rs1415293, rs2820441) commonly shared by the credible sets obtained from 
EA-only and EA+AA. Fifteen additional SNPs (rs2494196, rs3001032, rs2605101, 
rs2605095, rs2791550, rs2605108, rs2605109, rs2605092, rs2605098, rs2605096, 
rs7538503, rs12143910, rs2791551, rs2820436, rs2791552) are included in the EA-only 
derived credible set while no additional SNP is included in the EA+AA derived credible 
set. The length changed from 148,141bp for EA-only to 27,409bp for EA+AA derived 
credible sets. The LD surrounding the original index SNP is stronger in CEU compared 
to that in YRI. In addition, a few SNPs with high LD with the index SNP in both 
populations have enhanced association signals and the LD block with the index SNP is 
much narrower in YRI samples, leading to a narrower credible set in trans-ethnic 
analysis and dropping 15 variants from EA-derived credible set. 
 
 
GRB14 (chromosome 2) 
There are 4 SNPs (rs10195252, rs13389219, rs6717858, rs10184004) commonly 
shared by the credible sets obtained from EA-only and EA+AA. No additional SNP is 
included in the EA-only derived credible set while one additional SNP (rs1128249) is 
included in the EA+AA derived credible set. The length changed from 31,272bp for EA-
only to 32,272bp for EA+AA derived credible sets, respectively. The LD block 
surrounding the original index SNP is wider in EA samples compared to that in YRI 
samples; however, the block including variants having high LD (r2>0.6) with index SNPs 
are similar between two populations. Five variants standing out from other variants show 
strong associations in EA samples with one having a slightly weaker signal. The trans-



ethnic analysis enhances all five variants’ association signals to the similar level, leading 
to the inclusion of all five variants in the trans-ethnic analysis derived credible set.   
 
 
NISCH-STAB1 (chromosome 3) 
There are 7 SNPs (rs6784615, rs6445358, rs7614727, rs1010553, rs9853056, 
rs1060330, rs7614981) commonly shared by the credible sets obtained from EA-only 
and EA+AA. Three additional SNPs (rs758801, rs1010554, rs4282054) are included in 
the EA-only derived credible set while another three additional SNPs (rs1108842, 
rs13083798, rs7622851) are included in the EA+AA derived credible set. The length 
changed from 277,969bp for EA-only to 431,135bp for EA+AA derived credible sets. 
There is weak LD surrounding the original index SNP in EA sample. In addition, the 
signal for the index SNP is weak in EA sample and the trans-ethnic analysis does not 
enhance association signals (all logBF < 6). Therefore, the credible set in this case may 
not be informative.  
 
 
ADAMTS9 (chromosome 3) 
There are 7 SNPs (rs4132228, rs4611812, rs4422297, rs4504165, rs6772129, 
rs6795735, rs9860730) commonly shared by the credible sets obtained from EA-only 
and EA+AA. Six additional SNPs (rs9864077, rs17676309, rs9311910, rs6445425, 
rs17727064, rs7428936) are included in the EA-only derived credible set while no 
additional SNP is included in the EA+AA derived credible set. The length changed from 
30,676bp for EA-only to 8,669bp for EA+AA derived credible sets. Neither CEU nor YRI 
have strong LD with many variants surrounding the original index SNP; however, the 
variants in strong LD with the index SNP are within a narrow region in both samples of 
ancestries (narrower in YRI than in CEU). The association signals are highly enhanced 
and association signals for those top variants are more distinguishable in trans-ethnic 
analysis compared to EA sample only analysis. These facts lead to the dropping of 6 
variants from EA-derived credible set to form a more compact and narrower trans-ethnic 
analysis derived credible set.  
 
 
CPEB4 (chromosome 5) 
There are 11 SNPs (rs10516107, rs966544, rs747472, rs7736263, rs17695092, 
rs1976074, rs7705502, rs1484803, rs17696407, rs6882088, rs6861681) commonly 
shared by the credible sets obtained from EA-only and EA+AA. No additional SNP is 
included in the EA-only derived credible set while one additional SNP (rs1564823) is 
included in the EA+AA derived credible set. The length changed from 93,159bp for EA-
only to 93,159bp for EA+AA derived credible sets. The association signals within this 
locus are weak in the EA-sample and EA+AA sample (logBF < 6). Therefore, their 
relevant credible sets are not informative.  
 
 
LY86 (chromosome 6) 
There are 4 SNPs (rs1294410, rs1294421, rs1294407, rs912056) commonly shared by 
the credible sets obtained from EA-only and EA+AA. Two additional SNPs (rs1294438, 
rs912057) are included in the EA-only derived credible set while one additional SNP 
(rs1294409) is included in the EA+AA derived credible set. The length changed from 
15,862bp for EA-only to 6,952bp for EA+AA derived credible sets. The LD block 
surrounding the index SNP is narrow in both samples of ancestries, but it is narrower in 



YRI. The association signals are enhanced for some variants in trans-ethnic analysis 
and these significant variants form a cluster clearly separated from other variants in 
regional association plot. The weaker LD and stronger association signals lead to a 
narrower credible set in trans-ethnic analysis.  
 
 
VEGFA (chromosome 6) 
There is 1 SNP (rs1358980) commonly shared by the credible sets obtained from EA-
only and EA+AA. One additional SNP (rs6905288) is included in the EA-only derived 
credible set while one additional SNP (rs2998584) is included in the EA+AA derived 
credible set. The length changed from 6,678bp for EA-only to 6,655bp for EA+AA 
derived credible sets. There is very weak LD with the index SNP in both samples of 
ancestries. There is clearly a cluster of three variants significantly associated with 
phenotype WHR-BMI in both EA-only and trans-ethnic analysis; however, the signals 
were stronger in trans-ethnic analysis. Some random fluctuations lead to the slight 
change in the rank of association signals for these three variants and hence the variants 
included in credible sets.  
 
 
RSPO3 (chromosome 6) 
There are 18 SNPs (rs7766106, rs9491696, rs4382293, rs1936809, rs1936807, 
rs1892172, rs4424101, rs13204656, rs7742668, rs6916318, rs7775715, rs2326565, 
rs9285458, rs1936801, rs9491704, rs9491701,, rs3734626) commonly shared by the 
credible sets obtained from EA-only and EA+AA. Fifteen additional SNP (rs2745353, 
rs1936805, rs2503322, rs4566896, rs4644087, rs2503107, rs2489623, rs2800708, 
rs6569474, rs11154386, rs1936802, rs2503109, rs2503326, rs9491703, rs2326566) are 
included in the EA-only derived credible set while two additional SNPs (rs1936806, 
rs9482770) are included in the EA+AA derived credible set. The length changed from 
66,820bp for EA-only to 60,186bp for EA+AA derived credible sets. The LD surrounding 
the index SNP is quite similar between CEU and YRI but the index SNP is in LD with 
fewer variants in YRI. Many variants in LD with the index SNP show strong association 
signals in EA sample and in the trans-ethnic analysis the association signals are 
enhanced. Due to the similar pattern of LD and association signal, we do not observe 
dramatic change in the credible sets but only observe slightly narrower credible set in 
trans-ethnic analysis.  
 
 
NFE2L3 (chromosome 7) 
There are 10 SNPs (rs4141278, rs10245353, rs1055144, rs2893221, rs10267498, 
rs10282436, rs9987000, rs2391168, rs11770186, rs10260677) commonly shared by the 
credible sets obtained from EA-only and EA+AA. Three additional SNP (rs10238703, 
rs10951112, rs12666961) are included in the EA-only derived credible set while no 
additional SNP is included in the EA+AA derived credible set. The length changed from 
38,160bp for EA-only to 36,707bp for EA+AA derived credible sets. The LD surrounding 
the index SNP is stronger in CEU compared to that in YRI but the variants in high LD 
(r2> 0.6) span a similar range. A clear cluster of variants in LD with the index SNP shows 
strong association signals in both EA sample analysis and trans-ethnic analysis. Due to 
the similar pattern of LD and strength of association signals, we do not observe dramatic 
change in the credible sets but only observe slightly narrower credible set in trans-ethnic 
analysis. 
 



 
ITPR2-SSPN (chromosome 12) 
There are 7 SNPs (rs7302344, rs1049380, rs1049376, rs11048456, rs10842708, 
rs7132434, rs1463679) commonly shared by the credible sets obtained from EA-only 
and EA+AA. Six additional SNP (rs718314, rs1872992, rs10842703, rs1027087, 
rs2137564, rs10842707) are included in the EA-only derived credible set while one 
additional SNP (rs11048470) is included in the EA+AA derived credible set. The length 
changed from 38,192bp for EA-only to 28,393bp for EA+AA derived credible sets. The 
LD surrounding the index SNP is weaker in YRI compared to CEU and the association 
signals are strongly enhanced in trans-ethnic analysis. These facts lead to the dropping 
several variants to form a narrower trans-ethnic analysis derived credible set.  
 
 
HOXC13 (chromosome 12) 
There are 3 SNPs (rs1443512, rs1822438, rs10783615) commonly shared by the 
credible sets obtained from EA-only and EA+AA. No additional SNP is included in the 
EA-only derived credible set and no additional SNP is included in the EA+AA derived 
credible set. The length changed from 7,447bp for EA-only to 7,447bp for EA+AA 
derived credible sets. There is stronger LD in this locus in CEU compared to in the YRI 
but three variants, clearly separately from other variants, show strong association 
signals in both EA sample analysis and trans-ethnic analysis. These three variants 
comprise the 95% credible sets for both analyses. 
 
 
ZNRF3-KREMEN1 (chromosome 22) 
There are 2 SNPs (rs4823006, rs2294239) commonly shared by the credible sets 
obtained from EA-only and EA+AA. One additional SNP (rs2179129) is included in the 
EA-only derived credible set while no additional SNP is included in the EA+AA derived 
credible set. The length changed from 2,194bp for EA-only to 2,194bp for EA+AA 
derived credible sets. There were very few variants having strong LD (r2 > 0.6) with 
index SNP and these variants span a quite narrow region in both YRI and CEU. 
Therefore, we observe no dramatic changes in their relevant credible sets.  
 
 
 



 

Supplementary Table 1. Analysis method of ENCODE and Roadmap Epigenomics datasets used to annotate regulatory evidence. Method of analysis for ENCODE (integrative analysis or standard 
analysis) and Roadmap Epigenomics data (IDR or MAC2 alone) used in epigenomics analysis. Numbers in parentheses indicate the number of datasets when more than one is available. 
IDR=Irreproducible Discovery Rate, TF=Transcription Factor Binding.  

ENCODE Consortium                   

Sample Tissue DNase H3K4me1 H3K27ac H3K4me3 H3K9ac FAIRE H3K4me2 TF 

GM12878 Blood Integrative Integrative Integrative Integrative (2) Integrative Integrative Integrative Integrative (75) 

Astrocytes Brain Integrative Standard Integrative Integrative - Integrative - Integrative (1) 

Cerebellum Brain Standard - - - - - - - 

Cerebral Frontal Brain Standard - - - - - - - 

Frontal Cortex Brain Standard - - - - Integrative - - 

HUVEC Endothelial Integrative Integrative Integrative Integrative (2) Integrative Integrative Integrative Integrative (11) 

HepG2 Liver Integrative Integrative Integrative Integrative (2) Integrative Integrative Integrative Integrative (61) 

Hepatocytes Liver Integrative - - - - - - - 

Huh-7 Liver Integrative - - - - - - - 

Myocyte Muscle Integrative Integrative Integrative Integrative Integrative - Integrative Integrative (1) 

Myotube Muscle Integrative Integrative Integrative Integrative Integrative - Integrative Integrative (1) 

Psoas Muscle Muscle Standard - - - - - - - 

Differentiated Pancreatic Islets Pancreatic Islet Standard - - - - - - - 

Pancreatic Islet Pancreatic Islet Integrative - - - - Integrative - - 

                    

Roadmap Epigenomics Project                 

Sample Tissue DNase H3K4me1 H3K27ac H3K4me3 H3K9ac FAIRE H3K4me2 TF 

Adipose Nuclei Adipose - IDR MACS2 IDR IDR - - - 

Anterior Caudate Brain - IDR MACS2 IDR MACS2 - - - 

Mid Frontal Lobe Brain - IDR MACS2 IDR MACS2 - - - 

Substantia Nigra Brain - IDR - IDR MACS2 - - - 

Adult Liver Liver - IDR - IDR IDR - - - 

Skeletal Muscle Muscle - IDR MACS2 IDR IDR 
    

Pancreatic Islet Pancreatic Islet - MACS2 - MACS2 MACS2 - - - 

 

 

 

 



 

Supplementary Table 2. SNPs in LD with Credible Set SNPs that Overlap Regulatory Data. For loci with >25% decrease in credible region size, SNPs in LD with 
credible set SNPs are shown if they overlap two or more regulatory datasets in the same tissue. Negative distance from nearest GENCODE v12 basic annotation 
TSS indicates the variant is downstream of the TSS relative to the direction of transcription. Tissues with elements overlapping each SNP are indicated as 
A=Adipose, B=Blood, E=Endothelial,  I=Pancreatic Islets, L=Liver, M=Muscle, N=Brain, O=Bone; Chr=Chromosome, TSS=Transcription Start Site 

SNPs in LD with Credible set SNPs  (r2 >.8) Linkage Disequilibrium Regulatory Datasets Overlapping SNPs (by Tissue) 

SNP Chr Position Nearest Coding TSS EUR CR 

EUR 
LD 
(r2) AFR CR 

AFR 
LD 
(r2) Na 

Open 
Chromatinb H3K4me1 H3K27ac H3K4me3 H3K9ac H3K4me2 

TBX15-WARS2                             

rs1409157 1 119,504,487 25,941 TBX15  rs984225 1.00 rs984225 0.99 15 B AOML AOML L L OL 

rs10923713 1 119,510,487 19,941 TBX15  rs10923712 1.00 rs10923712 0.98 4 
 

AML A 
  

  

rs10802069 1 119,517,357 13,071 TBX15  rs10923712 0.99 rs10923712 0.86 9 M M AOM 
  

M 
ADAMTS9 

 
 

 
    

  
    

     
  

rs4368494c 3 64,701,387 -27,711 ADAMTS9  rs4504165 0.99 rs4132228 0.74 4   AM  M   

rs62247658 3 64,715,155 -41,479 ADAMTS9  rs4611812 0.98 rs6795735 0.95 3  M M  M   

LY86   
 

    
 

            

rs1294406c 6 6,737,737 148,810 LY86  rs1294409 0.99 rs1294421 0.30 18 M AOM AM AOMNIE 
 

OME 

rs1294418 6 6,742,185 153,258 LY86  rs1294421 0.99 rs1294421 0.97 5 M L M 
  

  

rs1294430 6 6,744,698 155,771 LY86  rs1294421 1.00 rs1294421 1.00 3 LB L 
   

  

rs1294436c 6 6,746,166 157,239 LY86  rs1294421 0.97 rs1294409 0.41 6 
 

ML M M M   

rs1294437c 6 6,749,789 160,862 LY86  rs912056 0.85 rs1294421 0.52 19   AOMNL AM AOML M ML 
 

aNumber indicates the total number of overlapping data sets across experiments and cell types 
     bOverlap with FAIRE and/or DNaseI hypersensitivity elements indicates open chromatin  
     cSNP exceeded the LD threshold of r2>0.8 in EUR only 

   
 

      



Supplementary Figure 1. Regional Plot 
of 14 Loci.  The top panel on each plot 
is the trans-ethnic meta-analysis result 
of EA+AA sample with HapMap II YRI 
linkage disequilibrium information. 

The middle panel displays the 
classification of each variant to 

whether it is included in the credible 
set. The bottom panel is from EA 

sample only analysis with HapMAP II 
CEU linkage disequilibrium 

information.  
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